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Rapid Cooling and Structure of Neutron Stars
Kenneth A. Van Riper! and James M. Lattimer?

'Los Alamos National Laboratory
*SUNY-Stony Brook

1 DIRECT URCA NEUTRINO EMISSION

Neutrino emission in the core of a neutron star bv the modified URCA process

(nap)+p+e- —r(n,p)+n+u.
(n,p)+n—+(n,p)+p+e' + v,

requires the existence of a spectator nucleon to simultaneously conserve energy and
momentum. Each degenerate nucleon involved in the reaction contributes a factor
T/Tr € 1 to the emission rate, where T is the temperature and T is the Fermi
temperature. Lattimer et al. (1991) have pointed out that the direct Urca process

n—p+e 40,
p+e —=n+y,

can occur in the degenerate matter of the neutron star core if the proton/nucleon ratio
is in excess of some critical value lying in the range 0.11-0.15. We have constructed
a number of high density equations of state (EOSs 1-6) which satisfy this criterion;
our numerical calculations make use of these for the neutron star model. Prakash ct
al. (1992) showed that matter with any proton/nucleon ratio can rapidly cool by the
direct Urca process if A hyperons cxist. Nearly all studies of supranuclear matter to
date indicate that one or the other, or both, of these situations will take place.
The direct Urca emissivity is

1577 GL(1 + 3g%)
Urea = To080 A0

mumu (k1) 0,

= 4.24 x 107 You/n,) Pmymy 100, erg em™ w7

where Ty = T'/10° deg, n, = 0.16 fin~* iy nuclear density, m, and m, are the effective
nuclear masses, m? and m, are thes» masses divided by the nucleon mass, and the



threshold factor ©,(z) = 1 if z > 0, 0 otherwise. For the dense matter equations of
state we assume, the threshold factor limits direct Urca emission to deusities greater
than 6.9 x 10'* g cm™3. The overall coefficient is 5 orders of magnitude larger than
the rate for the modified Urca process = 10*(Y,n/n,)'/’T; erg cm~3s~', and the
direct Urca falls more slowly with 7. When either the neutrons or protons, or both,
are saperfluid, the direct Urca rate is suppressed by the factor exp (%)exp (;.1:‘5),
where T, are the critical temperatures corresponding to the superfluid gaps.

2 THERMAL EVOLUTION MODELS

We made numerical calculations of the evolution of neutron stars cooling by
the direct Urca and other accelerated cooling mechanisms using the computer code
developed by Van Riper (1988, 1991). This code uses a diffusion algorithm to follow
both the conduction of heat ard energy losses by neutrino emission inside the star;
Van Riper (1991) describes the thermal conductivities, neutrino emissivities and heat
capacities used. We compute the temperature distribution interior to the density
10'°g em™? and treat the atmosphere external to this as a boundary condition using
the models of Van Riper (1988). For most models, a surface magnetic field strength
B = 10'?G was assumed. Magnetic field effects are important only at densities
< 10'® g cm~2. At higher densities a field B < 10'* G makes little impact on the
conductivity, heat capacity, and equation of state, and thus will not effect the cooling
wave,

Accelerated core cooling, such as by the direct Urca process, results initially in a
temperiture inversion. After a few months, the core of matter with densities greater
than nuclear has temperatures about a few x 10® deg, while the overlying crust is an
order of magnitude hotter. Energy in the crust conducts to the core, resulting in a
cooling wave which moves outward on a time given by the thermal conduction time in
the crust. The surface temperature drops precipitously, as shown in Figure 1, when
the cooling wave reaches the surface.

We define a cooling time ¢, indicated by filled circle in Figure 1, as the time
at which the slope of the cooling curve is the sterpest. Before this time, the surface
temperature 7T, is the same as for the standard cooling case (and depends only on
the properties of the crust). After ¢, the interior of the star has become isothermal,
and T, is determined by the global belance of emission and residual thermal energy.

A numbers of models with direct Urca and other accelerated cooling mechanisms,
such as the the Urca process on percolating quarks (Kiguchi and Sato, 1981), give
a range of ccoling times 1 € ¢, < 700 years. The cooling time increases with the
rading /2 of the star, as is shown in Figute 2. A power law fit to £, (12) (x K% is best)
is rather poor. A much better power law results if we consider ¢, as a function of the
crust thickness Hgp. = fH-r (p = /’nm-lmr)' The exponent of the fit, 1.8 2.0, iy
the value expected from our analytic considerations below, The solid curves in Figure
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FIG. 1.— Cooling curves for a 1.4 My neutron star with a surface magnetic field
strength 10'? G constructed with EOS 1 and including standard superfluid effects.
The dashed line assumes a “standard” neutrino emissivities. The solid curve results
when direct Urca emission occurs in the core. The filled circle shows our definition
of the cooling time t,,. The dot-dashed curve assumes an isothermal interior and the
direct Urca process; the interior of the realistic star has become isothermal when this
and the solid curve coincide.

2 are a sequence of models of M = 1.4 M, stars with different high density equations
of state. The dashed curve is from varying the mass with one equatioa of state our
F.OS 2 which has compressibility of 180 MeV at nuclear density and gives a maximum
neutron star mass of 1.45M,. When superfluid effects are not included, the cooling
timme increases by a factor of 3. This is due to the lack of superfluid suppression
of the neutron heat capacity C'y in the crust and the dependence ¢, x ('y. The
factor of 3 depends on an average in both space and time of the fraction of superfluid
neutrons in the crust wnd the contribution of the neutrons to ('y relative to the
clectron contribution, which is unaffected by superfluidity.
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FIG. 2.— The cooling time t,, as a function of stellar radius (left panel) and the crust
thickness (right panel)

3 ANALYTIC MODEL FOR DIFFUSION THROUGH THE CRUST

We have developed analytic and semi-analytic models for the cooling wave in the
crust to find the dependence of the cooling time on stellar properties such as the
crust thickness. We consider only conductive transport of energy in the crust; neu-
trino emission there takes place a time scale longer than ¢, at an age of ¢,,. General
relativistic terms are also neglected for the sake of simple equations. (These approx-
imations are not made in the numerical calculations.) The equations of radiative
transport and energy halance are

I = ——47rr’l\'(,)—r and (_.,!1 = _4”7(",11_‘
or r or

where L is the luminosity, » is the radial coordinate, and K is the thermal condue-
tivity. A good fit to the latter for a large region of (T'.p) space is K ~ A(p/p,)/T
with A =4 x 10%® erg em™! 57 and p, = 2.7 x 10" g em~™* The specific heat can



approximated by Cy =~ B(p/p,)'/*T with B = 1.6 x 10" erg K-2 cm~3. Combining
all this gives a single equation

1 0 [AprtdT p 2T

—_— —|=B|— T—

ridr \ p,T Or Po ot
for conduction in the crust. Here we consider the simple case p = constant; more gen-
eral solutions can be found in Lattimer et. al. (1992). We assume that the solution for
T is separable in time and space, T = T,y (r)#(t), where T, is the initial temperature
at the outer edge of the crust (ie. at t = 0, r = R). The boundary conditions are

taken to be '(,L"(R) = 1, ‘l/)’(R) = 0, ¢(0) = 1, and 'Q[’(Rcore) = Tcore/Tsurface ~ 1/30
Defining a dimensionless depth

N Sk
- R - Rcore
and shell thickness
- R —
7 R~ Recore’
we have
1 d |dy 2 dp B (p\" -
idrpdr Y3z +q)de A (p,, (£ = Reore) Ty by = ~a

where a is a separation constant. The solution for the time function is

¢=\/—1——_§

where

, = BT2(R - Rcore)’ 130( T, )2 (R— Rf:ore)2 rs
= T Aalple ) T U\ K km / a(p/p) P 7

Note the proportionality to B o« Cy and the ond power of the shell thickness. If we
assume a thin shell, ¢ € 1, the radial equation becomnes

which is solved by

1
"= cosh[y/axz]
with
a = [cosh™ (1)) ~ 17,

which has a weak dependence on the core temverature,
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FIG. 3.— Cooling curves for 1.4 M neutron stars cooling by the direct Urca process.
The different line styles correspond to 3 different EOSs which result in the central
densities shown. For each EOS, superfluid suppression of emissivitizs and heat ca-
pacities was neglected (no SF) or treated with standard superfluid parameters (SF)
or with enhanced gaps above nuclear density (Extreme SF).

4 CORE SUPERFLUIDITY

The direct Urca process is suppressed by a factor exp --f:) for neutrons and/or
protons when those nucleons are superfluid. The reduction in the cooling rate and
the consequent effect on the cooling curves can be large if a large portion of the
direct Urca emitting core is superfiuid. The effect is much more than in the standard
cooling case where crust bremsstrahlung emission, which persists in supertliuid regions,
is comparable in total emissivity to the modified Urca process.

Figure 3 shows rooling curves for three variations of superfluid treatment. Super-
fluid suppression of the emissivity and heat capacity does not occur in the “no SF”
case. The “SF" model treats suppression with gaps based on realistic calculations
(‘Takatsuka 1972, Chao, Clark, and Yang 1972). The “extreme SF" model exagger-
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FIG. 4.—The superfluid gaps used the calculations. The same neutron 'S, gap is

used for both the standard and extreme models. The arrows along the top show the
central densities of the stars whose cooling is shown in Figure 3.

ates the neutron ®P; and proton 'S, gaps above nuclear density by increasing both
their height and density range. The standard and extreme gaps are shown in Figure
4. The neutron 'S, gap in the crust is the same in both models. In addition to
exploring the effects of uncertainties in these two gaps, the extreme model is useful in
estimating the conszquences of gaps at higher densities due to higher order pairings.
Direct Urca cooling was calculated for three equations of state. The stiff EOS
3, which has a maximura neutron star mass of 2.06 M, results in a 1.4M; neutron
star having a central density p. just above the direct Urca threshold. A soft case
and a high p, is represented by EOS 4, for which the maximum mass is 1.44M,,.
Figure 4 shows ihe p, of thesc three neutron stars. The direct Urca emitting region
extends from the threshold of 6.9 x 10" g cm~2 to the central density; the magnitude
of the superfluid effect depends on the overlap of the gaps with this density range.
T'he relative overlap decreases with increasing central density, and Figure 3 shows a
large change in the cooling curve for the SF models for eqnations of state 3 and 1



which have a large amount of superfluid matter in the core. The central density for
equation of state 4 is well above the reach of the standard neutron *P, gap; the major
difference between the SF and no SF models for equation of state 4 is the change in
t, due to the superfluid suppression of the heat capacity in the - ust. The extreme
SF gaps nearly obviate the role of the direct Urca process as an accelerated cooling
mechanism.

5 CONCLUSIONS

A neutron star cooling very rapidly in the center will undergo a sharp decrease
in surface temperature at the time ¢, for thermal diffusion through the crust. This
time depends on the square of the thickness of the crust, and is also influenced by
the details of the neutron superfluidity in the crust. An observational determination
of #, will limit the radius of the star, and hence the mass and high density equation
of state.

For stars cooling by the direct Urca process, the surface temperature in the epoch
between the drop at ¢, until an age of about 10° years depends strongly on the details
of the superfluid gaps above nuclear density and on the central density of the star.
The parameters of the high density gaps are uncertain, as is the central density. It
is also possible that higher order gaps exist for both the neutron and protons; these
gaps will also influence the surface temperature for t > ¢,,.
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